99(3) decay; 0. i found this confusing as i had not seen this before Shouldn't the slope be -6?Writing a linear function of the form f(x)=mx+b and an exponential function of the form g(x)=a⋅rˣ, given a table of values of those functions. 2. t 6. Practice. --N. Without graphing, determine whether the function represents exponential growth or exponential decay. Determine whether each table or rule represents a linear or an exponential function. 75)* growth; 20. (7) —I§ 6. Round answers to the nearest hundredth. 16t 5. y 5. 19. . Zero and Negative Exponenis. Practice. f (x) = 5x for x = 4. g exponential decay. Zero and Negative Exponents. Form G. 243. Explain. 46 46. Graph each exponential function. Write each expression in exponential form. . y 5 tjåtña AN 6|| ſº 29. 7. 8. 20. 9. Zero and Negoiive Exponenis. 5. 7-6. 9. indd 21 7-3 3/23/09 9:55:47 AM Practice 7-3 Form G Practice (continued) Form G PED-HSM11A2TR-08-1103-007-L03. 7112343 21 =27. 3m p m8 14. Name Class Date. 5R x. All Rights Reserved. Answers and Solutions CD-ROM. What is the value of each expression? The first one has been started for you. Page age 557 1. Lesson Quiz. 5 125. Lesson 7-6 Exponential Functions. 7. 3 2. 13. 329. @ <3) -. 21. _(7)-2 6. —8 o ,_3_ __5_. y = 6 Writing a linear function of the form f(x)=mx+b and an exponential function of the form g(x)=a⋅rˣ, given the graphs of those functions. a 3. Class. a^x is never really introduced--it just sort of appears in the context of problem videos. 5-6 Parallel and Perpendicular Lines. 3 {1 3. y = 185(3) growth, 185 10. 3. l ai'x All. 1. 26. y = 5 - 2 4. Graph your function on a graphing calculator. Practice Form K (TR)*. 7-3 Practice B Logarithmic Functions Write each exponential equation in logarithmic form. P(t) 5 z 80(0. 3x. Page 7 page 3. _. 322. 7 6 Practice _ ' FormG. Date. y = 4 · 0. 5 more than d. _ —2 1 —1 l. Determine whether each table or rule represents an exponential function. 9, the quotient of 15 and y 10. 5-5 Standard Form. Evaluate each function for the given value. 2 , ſº (º). 364” =216 6. 13° 2. y 5 (0. A multiplied by 5 6, a numbert divided by 3 x -: t = 3. F 4. 4. a. Name Class Date. 7-1 Practice. Logarithmic Functions as Inverses. 6. Exponential Functions. Write an algebraic expression for each word phrase. Write a function that models the change in the animal population. -(7)2 6. _ 7-2"- 3 , yr? at“) 25 . Exponents and Exponential Functions. y = 2001. —(11x)0 12. Graph each function. 8J2 q3 rJ5. Neat, don't you think?23 × 1037). x3 @ 10. 5-7 Scatter Plots and Trend Lines . pJ8. Extra Practice. f(x) 5. ExamView CD-ROM. Simplify each expression. * = 10 * = tº. 2 —2. _ 0 _ 1. 7–5 Practice Form K tº- Rational Exponents and Radicals. 6 -1 3. PED-HSM11A2TR-08-1103-007-L01. (9) 204. 5t. 7-6. 56 10. 11. 13 1 2. 330. 7, one fourth of a number n in º- 2. “\. vJ3. —6° 8. Concept Byte: ACTIVITY Inverse of a Linear Function. 7- 1 Practice Forn G. Page 3. y 5 3x. 11xyJ1z0. 447. 7-1. J3kJ3(mn)3. 7 6 Practice f Forn G. 46. 1 x 3. 130 2. 9(ab)J4 c7. 11 dº - an º' 12. Exploring Exponential Models. l}. Your soccer team wants to practice . J. Objective To evaluate and graph exponential functions. J(10a)J4 b0. "' . Practice Form G. 1 . l { 3. Remember that an exponential function exists when you have a constant ratio between the y values and a constant difference between the x values. indd 1. 17. x2 = {x' 8. 6b. Solving Inequalities. 16. a2m3nbJ3. 7- | Practice Form G. Enrichment (TR). 15. Naº (6) is ſº - 9% o' (º) 16. 561—4. —s. 227125a. y 5 2Q. ) 14. y = 3x – 8. «earn-u: (93 A, _4¥+1,34_4x. (3)x. 4-1. Determine whether each table represents a linear or an exponential function. Variables and Expressions. 252m" =625 5. Then find the y-intercept. 7 minusf 4. Systems of Equations and Inequalities. Solve each equation. Quizzes and Tests Form G (TR)*. † – # 11 + k,. 7x for x = 3. Name. ºf ſºlº). 5mJ1. 99 8. y = 6 · x3. y = 0. s(t) 5 2. o —3 L. _ 0 _ —2 _4. 5 -t. 3/23/09 6:26:28 PM. Si eache t' . (11x) —1 12. 311 =32 %(2 2. Which of the following. 965) z. Form K. Sketch Practice. y. Linear Functions. Determine whether each equation 3. E 1 10 6170 6b. An Introduction to Functions. 64" =4096 g _. (5)x. If there was a y = x^2 + 2x + 2 , a y = x - 6 , and a y = x^3 - 8 ; that wouldn't work out so it is better to separate the y. general form of y= r . a 5-6. y = log2(x - 4) + 1. the sum of 11 and k. 55. f(x) = x^2 + 2x + 2 g(x) = x - 6 h(x) = x^3 - 8. 2 x. (25%) - agº x. Prentice Hall Gold Algebra 1 # Teaching Resources. 7_ -| Practice Form G. h(t) = 3 · 4t for t = –3. 3-4 4. 7-6 Practice Form K Expon 7-6 Multiple Choice For Exercises 1–6, choose the correct letter. -(12x)? . 3)x. Explain why or why not. 'J. N36-V6-6 - (G) 2. 7-5 Exponential and Logarithmic Equations. (12x) 144K: 1 o. -60 8. 15x4 º). 53. y = 5 · 2x. y 5 2 Q 5 R. 18. Form G. -g. 10 lessthān x 2. y = 8 · 0. Class Date. —3_4 243 4- 271 8. (√z xy